
I/O-Efficient Algorithms for Degeneracy
Computation on Massive Networks

Rong-Hua Li , Qiushuo Song, Xiaokui Xiao , Lu Qin , Guoren Wang , Jeffrey Xu Yu , and Rui Mao

Abstract—Degeneracy is an important concept to measure the sparsity of a graph which has been widely used in many network

analysis applications. Many network analysis algorithms, such as clique enumeration and truss decomposition, perform very well in

graphs having small degeneracies. In this paper, we propose an I/O-efficient algorithm to compute the degeneracy of the massive

graph that cannot be fully kept in the main memory. The proposed algorithm only uses OðnÞmemory, where n denotes the number of

nodes of the graph. We also develop an I/O-efficient algorithm to incrementally maintain the degeneracy on dynamic graphs. Extensive

experiments show that our algorithms significantly outperform the state-of-the-art degeneracy computation algorithms in terms of both

running time and I/O costs. The results also demonstrate high scalability of the proposed algorithms. For example, in a real-world web

graph with 930 million nodes and 13.3 billion edges, the proposed algorithm takes only 633 seconds and uses less than 4.5GB memory

to compute the degeneracy.

Index Terms—Degeneracy, I/O-efficient algorithm, k-core, massive graphs

Ç

1 INTRODUCTION

GIVEN a graph G, the degeneracy of G, denoted by d,
is the smallest integer such that every subgraph of G

has a node of degree at most d. The degeneracy has been
recognized as an important concept for measuring the spar-
sity of a graph, and it finds applications in several diff-
erent domains, including network analysis, graph mining,
and graph theory. A few significant applications are as
follows.

Maximal Clique Enumeration. A clique is a completed sub-
graph in which every pair of nodes has an edge, and a maxi-
mal clique is one whose super-graphs are all non-cliques.
The state-of-the-art algorithms [1], [2] for enumerating max-
imal cliques require an efficient algorithm for deriving the
degeneracy ordering of nodes, which is a byproduct of degen-
eracy computation. Therefore, an improved algorithm for
computing degeneracy immediately leads to more efficient
methods for maximal cliques enumeration.

Densest Subgraph Discovery. The densest subgraph G0 [3] of
a graph is the one that maximizes m0=n0, where m0 and n0

denote the numbers of edges and nodes in G0. The identifi-
cation of the densest subgraph has numerous applications
such as community discovery [4], [5], [6], [7], [8], graph
compression [9], computational biology [10], and spam
detection [11]. Since the exact computation of densest sub-
graph is expensive [3], most existing techniques aim to
derive approximate solutions, which require obtaining an
approximation of the maximum subgraph density, i.e., the
maximum value of m0=n0. It is well known that the degener-
acy is a 2-approximation of the maximum subgraph density
[12], and therefore an efficient algorithm for computing
degeneracy is highly useful for densest subgraph computa-
tion [12], [13], [14].

Complexity Bounds of Graph Algorithms. Degeneracy is a 2-
approximation of arboricity [15], [16] (see Section 2 for
details). The arboricity is a classic graph measure that is fre-
quently used to analyze the space or time complexity of net-
work analysis algorithms, such as triangle counting [17],
k-clique enumeration [18], truss decomposition [19], [20],
structural graph clustering [21], influential community
search [22], [23], top-k structural diversity search [24]. Com-
puting the exact value of arboricity, however, incurs signifi-
cant costs [25]. To address this issue, one can derive the
degeneracy of the input graph G, and then use it as an
approximation ofG’s arboricity for analysis.

In addition, the degeneracy d has also been widely used
as a parameter in many fixed-parameter tractable (FPT)
graph algorithms [26], in which the complexity of these
algorithms depend mainly on an exponential function of d,
e.g., Oð3dÞ. For example, the classic dominating set problem
[27], [28], [29], cycle counting problem [30], as well as the
maximal clique enumeration problem are shown to be FPT
with the parameter d. Thus, computing the degeneracy of a
graph G can be useful to predict whether such FPT algo-
rithms are tractable in G.

� Rong-Hua Li is with the Beijing Institute of Technology, Beijing 100811,
China, and also with the National Engineering Laboratory for Big Data Sys-
temComputing Technology, Beijing, China. E-mail: lironghuabit@126.com.

� Qiushuo Song and Rui Mao are with the Shenzhen Institute of Computing
Sciences, Guangdong Province Key Laboratory of Popular High Perfor-
mance Computers, Shenzhen University, Shenzhen, Guangdong 518060,
China. E-mail: qsong98@gmail.com, mao@szu.edu.cn.

� Xiaokui Xiao is with the National University of Singapore, Singapore
119077. E-mail: xkxiao@ntu.edu.sg.

� Lu Qin is with the University of Technology, Sydney, NSW 2007, Australia.
E-mail: Lu.Qin@uts.edu.au.

� Guoren Wang is with the Beijing Institute of Technology, Beijing 100811,
China. E-mail: wanggrbit@126.com.

� Jeffrey Xu Yu is with the Chinese University of Hong Kong, Hong Kong.
E-mail: yu@se.cuhk.edu.hk.

Manuscript received 2 Feb. 2018; revised 10 Aug. 2020; accepted 29 Aug. 2020.
Date of publication 3 Sept. 2020; date of current version 3 June 2022.
(Corresponding author: Guoren Wang.)
Recommended for acceptance by Y. Xia.
Digital Object Identifier no. 10.1109/TKDE.2020.3021484

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022 3335

1041-4347� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
mailto:lironghuabit@126.com
mailto:qsong98@gmail.com
mailto:mao@szu.edu.cn
mailto:xkxiao@ntu.edu.sg
mailto:Lu.Qin@uts.edu.au
mailto:wanggrbit@126.com
mailto:yu@se.cuhk.edu.hk

Motivation. For a graphG that fits in themainmemory, the
degeneracy of G can be computed efficiently using a linear-
time algorithm for core decomposition [31], [32]. Specifically,
the algorithm consists of several iterations, such that the kth
(k ¼ 1; 2; . . .) iteration recursively removes all nodes in G
whose degrees are smaller than k, until all remaining nodes
have degrees at least k in the subgraph that they induce (this
subgraph is referred to as the k-core). It is known that if the
degeneracy of G equals d, then the algorithm runs in exactly
d iterations, i.e., d equals the largest core number k inG.

Nevertheless, real-world graphs are often too large for
the main memory of a single machine. For example, the cur-
rent Facebook social network contains 1.32 billion nodes
and 140 billion edges (http://newsroom.fb.com/company-
info). This motivates semi-external algorithms for degeneracy
computation via k-core decomposition [33], which require
only the nodes of G to be memory-resident but allows the
edges of G to be disk-resident. For instance, for the afore-
mentioned Facebook graph, around 10GB memory is suffi-
cient to accommodate all nodes in the graph.

The state-of-the-art semi-external algorithm for core
decomposition [33], however, suffers from the following defi-
ciencies. First, to derive the degeneracy d of a graph G, it
requires enumerating the 1-, 2-, . . . , d-cores ofG, which incurs
unnecessary overheads because, intuitively, the i-cores
(1 � i � d� 1) are not particularly useful for degeneracy
computation. Second, if we use this algorithm to track the
degeneracy of a dynamic graph G, we would need to main-
tain the core decomposition of G which takes Oðlðmþ nÞ=BÞ
I/O costs [33] (l is the iteration number of the algorithm, m
and n denote the number of edges and nodes of the graph
respectively, and B denotes the block size), thus it is rather
costly for massive graphs. Alternatively, one may apply the
existing semi-streaming1 algorithms [12], [13], [34] for degener-
acy computation. These algorithms, however, can only return
ð2þ �Þ approximation of degeneracy and are designed only
for static graphs (see Section 3 for details).

Our Contributions. To overcome the limitations of the
existing solutions, we propose a semi-external method for
degeneracy computation that utilizes an algorithm design
drastically different from previous methods. Specifically,
our method does not rely on core decomposition to identify
the degeneracy d of the input graph G. Instead, we start by
deriving an (potentially loose) upper bound ub and a lower
bound lb of d, and then perform a binary search in the range
½lb; ub� to pinpoint the exact value of d. To facilitate this
binary search, we develop a novel I/O-efficient algorithm
that takes as input G and an integer k, and returns a k-core
ofG (if any) without computing the full core decomposition.
In addition, we also devise a semi-external algorithm to
incrementally maintain the degeneracy of G when there are
edge insertions or deletions.

We experimentally evaluate our algorithms using a vari-
ety of benchmark datasets with up to several billion edges.
The results show that our degeneracy computation method
is an order of magnitude faster than the state-of-the-art solu-
tion [33], and our degeneracy maintenance approach is
up to three orders of magnitude faster than prior art. For

instance, on the GSH dataset with 0.9 billion nodes and 13.3
billion edges, our algorithm takes around 10 minutes to
derive the exact value of degeneracy, whereas the state of
the art requires more than two hours. For degeneracy ma-
intenance, our solution needs only 0.02 seconds (resp.
0.1 milliseconds) on average to process an edge insertion
(resp. deletion), whereas prior art requires around 0.3 seconds
(resp. 0.1 seconds). Furthermore, our solution is memory-
efficient: it requires less than 4.5GB memory to handle GSH,
which is 625GB in size.

Taking one step further in our experiments, we apply our
algorithm to measure the degeneracies of 150 publicly avail-
able graphs, including social networks, web graphs, citation
networks, collaboration networks, infrastructure networks,
biological networks, and communication networks. This
large experimental study is motivated by the facts that (i) a
large body of existing work (e.g., [2], [17], [18], [22], [28], [29],
[35]) assume that real networks have small degeneracies, but
(ii) to our knowledge, this assumption has never been vali-
dated with systematic experiments, presumably because of
the significant overheads incurred by existing algorithms for
degeneracy computation. Our results show two sides of a
coin. On one hand, we observe that the majority of the 150
graphs tested do have fairly small degeneracies (with
d < 200); on the other hand, we also notice that large social
networks and web graphs can have degeneracies up to sev-
eral thousands. In particular, the degeneracies of a social net-
work Twitter and a web graph UK are 2,488 and 10,424,
respectively. This indicates that the “small-degeneracy”
assumption might be excessively optimistic for social net-
works and web graphs, and that future work on these two
types of graphs should not rely on this assumption.

Organization.We formally define our problem in Section 2,
and survey the existing I/O-efficient algorithms for degener-
acy computation in Section 3. Sections 4 elaborates the I/O-
efficient degeneracy computation algorithm, and Section 5
describes the I/O-efficient degeneracy maintenance algo-
rithm. Section 6 presents the experimental results. Finally,
we conclude this work in Section 7.

2 PRELIMINARIES

Problem definition.We aim to develop efficient algorithms for
(i) computing the degeneracy d of a graph G and (ii) incre-
mentally maintain d when there are edge insertions or dele-
tions in G. We assume that G is massive in the sense that the
main memory can only accommodate G’s nodes but not its
edges. In other words, we assume that the memory size is
OðnÞ. Note that this assumption is well-adopted in previous
work for analyzing massive graphs [12], [33].

Below, we introduce some useful notations, as well as the
formal definition of the degeneracy d of a graph G.

Concepts and Notations. Let G ¼ ðV;EÞ be an undirected
graph with a node set V and an edge set E, with jV j ¼ n
and jEj ¼ m. Let NuðGÞ , fv j ðu; vÞ 2 Eg be the set of neigh-
bors of u in G, and duðGÞ ¼ jNuðGÞj denote the degree of u
in G. A graph G0 ¼ ðV 0; E0Þ is a subgraph of G, denoted as
G0 � G, if V 0 � V and E0 � E. Give a set of node Vs � V , the
subgraph induced by Vs is defined as GðVsÞ ¼ ðVs; EsÞ,
where Es ¼ fðu; vÞ j ðu; vÞ 2 E; u 2 Vs; v 2 Vsg.

The degeneracy of G [36], denoted as d, is defined below.
1. A semi-streaming algorithm is a semi-external algorithm that

requires only a small number of sequential passes of the input graph.

3336 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

http://newsroom.fb.com/company-info
http://newsroom.fb.com/company-info

Definition 1 (Degeneracy). The degeneracy d of a graph G is
the smallest integer such that every nonempty subgraph of G
contains a node with degree at most d. More formally,

d , max
8G0�G

min
u2G0
fduðG0Þg: (1)

Given a graph G and an integer k, the k-core of G,
denoted as Ck, is the maximal induced subgraph of G such
that every node in Ck has degree no less than k [37], i.e.,
duðCkÞ � k for every u 2 Ck. The core number of a node u,
denoted as cu, is the largest integer k such that there is a
k-core containing u. The maximum core number of a graph
G, denoted by cmax, is the maximum value of core number
for any node in G. It is known that the degeneracy of G
equals the maximum core number [2], i.e., d ¼ cmax. In the
remainder of the paper, we use d and cmax interchangeably
to denote the degeneracy of G. We demonstrate the above
concepts using an example below.

Example 1. Consider the graph G shown in Fig. 1. The
degeneracy of G is 3, because (i) there is a subgraph
induced by fv1; v2; v3; v4g where the minimum node
degree is 3, and (ii) no subgraph has minimum degree
larger than 3. In addition, the core number of each node
in fv1; v2; v3; v4g is 3, because the subgraph induced by
fv1; v2; v3; v4g is a 3-core. Meanwhile, the core numbers of
v5 and v7 are equal to 2, and the core numbers of v6 and v8
equal 1. tu
Graph Storage and I/O Model. We organize G on the disk

in the same manner as in previous work [33]. Specifically,
we store the adjacency lists of G, denoted as fNv1ðGÞ;
Nv2ðGÞ; . . . ; NvnðGÞg, in an edge file sequentially on the disk.
We also use a node file to store a list including the offsets and
degrees of the nodes fv1; v2; . . . vng. To load the neighbors of
a node vi into the memory, we first access the node file to get
the offset and degree of vi, and then load the neighbors of vi
from the edge file. We adopt the widely-used external mem-
ory model proposed in [38] to analyze the I/O-efficient algo-
rithm. Specifically, let M be the memory size and B be the
block size (B < M). The disk files are organized by blocks
and each block size is B bytes. For each read I/O, the algo-
rithm loads one block of sizeB from disk into main memory.
Similarly, for each write I/O, the algorithm write one block
of size B from the main memory into disk. The I/O costs for
each algorithm denotes the total number of read andwrite I/
Os taken by the algorithm. Note that the semi-external I/O
model assumes the memory sizeM ¼ OðnÞ [12], [33], i.e., the
main memory can hold all nodes of the graph but cannot
store all edges. In this paper, we adopt such a semi-external
I/O model to design and analyze algorithms for degeneracy
computation.

3 EXISTING I/O-EFFICIENT ALGORITHMS

In the literature, there exist two types of algorithms for
degeneracy computation that assumes OðnÞ memory as we
do. The first type is semi-streaming algorithms [12], [13], [14],
[34] that require only a small number of sequential passes of
the input graph, while the second type is a semi-external
algorithm for k-core decomposition [33], referred to as
SemiCore. In this section, we reviews two types of algo-
rithms in detail.

We also note that there is a full external-memory k-core
decomposition algorithm [39] designed for the case when
the memory is too small to accommodate even the nodes in
the input graph. Such a full external-memory takes Oðdðmþ
nÞ=BÞ I/Os. As shown in [33], the performance of this full
external-memory algorithm is much worse than the state-of-
the-art semi-external algorithm [33] which uses Oðlðmþ
nÞ=BÞ I/Os (l is typically smaller than d). Therefore, we omit
the full external-memory algorithm proposed in [39] in this
section.

3.1 Semi-Streaming Algorithms

Existing semi-streaming algorithms [12], [13], [34] adopt a
greedymulti-pass approach to compute degeneracy. Specifi-
cally, in the ith pass, the algorithms identify an induced sub-
graph Gi ¼ ðVi; EiÞ and compute the density ri of Gi, where
ri ¼ jEij=jVij. Then, they delete all nodes whose degrees are
smaller than a� ri, where a ¼ 2þ � > 2 is a given parame-
ter. When all nodes are removed, the algorithms terminate
and output a�maxifrig as an a-approximation of the
degeneracy. Throughout the algorithms, we only maintain
the degree of each node in the main memory, which takes
only OðnÞ space. It was shown that such semi-streaming
algorithms only requireOðlog 1þ"=2nÞ passes overG [12].

The main drawback of the above semi-streaming algo-
rithms is that their approximation ratio is relatively loose,
as demonstrated in the experiments. Specifically, the algo-
rithms can only provide ð2þ �Þ-approximate solutions
when incurring Oðlog 1þ"=2n� ðmþ nÞ=BÞ I/O costs, where
B denotes the block size. Additionally, it is not clear how
the algorithms can be applied to incrementally maintain the
degeneracy when G is updated.

One-Pass Streaming Algorithm. In [14], Farach-Colton and
Tsai propose a one-pass streaming algorithm to compute
ð1þ �Þ-approximations of the degeneracy based on a
streaming sampling technique. This algorithm, however,
requires Oð��2nðlog 2nÞ2Þ bits [14] (Oð��2nðlog 2nÞÞ bytes),
which is often larger than the OðnÞmemory that we assume,
especially when � is small.

3.2 The SemiCore Algorithm

The SemiCore algorithm [33] is the state-of-the-art semi-
external algorithm to compute the exact degeneracy of a
graph, and it is based on iterative k-core computation [40].
To explain the algorithm, we first introduce h-index [41],
which is a key concept in SemiCore.

Definition 2 (h-index). LetX ¼ fx1; x2; . . . ; xtg be a set of real
values. The h-index ofX is defined as the largest integer k such
that there are k values in X no less than k, i.e., hðXÞ ,
argmaxk

�jfxi jxi � k; xi 2 Xgj � k
�
:

Fig. 1. Running example.

LI ETAL.: I/O-EFFICIENTALGORITHMS FOR DEGENERACYCOMPUTATION ON MASSIVE NETWORKS 3337

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

For example, consider the set X of node degrees in the
graph in Fig. 1, i.e., X ¼ fdv1 ; dv2 ; . . . ; dv8g ¼ f3; 4; 5; 4; 4; 1;
2; 1g. The h-index ofX equals 4, since (i) there are four nodes
fv2; v3; v4; v5g with degrees no less than 4, and (ii) 4 is the
maximum integer satisfying this degree constraint.

The h-index was originally proposed as a measure of the
scientific outputs of researchers, but recently was applied to
devise efficient graph algorithms [35], [42], [43]. A crucial
observation utilized in SemiCore is that the core number of
a node u is equal to the h-index of the core numbers of u’s
neighbors [40]. Based on this observation, SemiCore starts
by setting an upper bound of the core number for each node
u (e.g., the degree du), and then it iteratively refines the
upper bound by computing the h-index of the upper bounds
of u’s neighbors. The algorithm terminates when no node’s
upper bound needs to be updated [33], [40]. We note that L€u
et al. [44] also independently discovered such an h-index
iteration algorithm. To reduce the I/O costs, SemiCore lev-
erages a clever pruning rule to avoid refining the upper
bound of a node until necessary. As shown in [33], the mem-
ory overhead of SemiCore is OðnÞ, and the I/O complexity
of SemiCore is Oðl� ðmþ nÞ=BÞ, where l denotes the num-
ber of iterations. In addition, it is shown that SemiCore can
be extended to incrementally maintain the core numbers for
all nodes when there are edge insertions or deletions.

The main deficiency of SemiCore is that, if we apply it to
compute the degeneracy d of a graph, then it may require a
large number of iterations, as it needs to derive the core
numbers of all nodes before obtaining d, leading to signifi-
cant overheads. Table 1 summarizes the detailed properties
of all the existing I/O-efficient algorithms.

4 OUR SOLUTION

In this section, we first propose a basic algorithm (referred
to as SemiDeg) based on the idea of binary search, and pres-
ent an improved methods (referred to as SemiDeg+) that
offers higher efficiency.

4.1 The Basic Algorithm

Bounds of the Degeneracy. Before presenting the details of
SemiDeg, we first introduce several bounds on the degener-
acy d that SemiDeg utilizes. Let ĉu denote an upper bound of
the core number of a node u, and ĉ ¼ fĉv1 ; . . . ; ĉvng be a set of
upper bounds of the core numbers of v1; v2; . . . ; vn. In addi-
tion, let d ¼ fdv1 ; . . . ; dvng the set of degrees of the nodes in
V . By Definition 2, the h-index of ĉ, denoted by hðĉÞ, is

hðĉÞ ¼ argmax
k

�jfĉv j ĉv � k; v 2 V gj � k
�
: (2)

Given any upper bounds set ĉ of the core numbers, we
can easily derive that hðĉÞ � d. Let hðĉ; NuðGÞÞ be the
h-index of u with respect to (w.r.t.) the upper bounds of the
core numbers of u’s neighbor nodes. By Definition 2,

hðĉ; NuðGÞÞ , argmax
k

�jfĉv j ĉv � k; v 2 NuðGÞgj � k
�
:

(3)

For any node u 2 V , we can easily show that hðĉ;NuðGÞÞ �
cu for any upper bounds set ĉ. Since du � cu for node u 2 V ,
we have hðd;NuðGÞÞ � cu. For convenience, we refer to hu ¼
hðd;NuðGÞÞ as the h-index of a node u. Let h ¼ fhv1 ; . . . ; hvng
be the set of h-index of all nodes in V . Since h is a valid upper
bounds set of the core numbers, the h-index of h, denoted as
h
, is an upper bound of the degeneracy d. In what follows,
we show that h
 is a tighter upper bound than hðdÞ.
Lemma 1. h
 � hðdÞ.
Proof. Since hu � du for any u 2 V , the h-index over h must

be no larger than the h-index over d. As a result, we have
h
 � hðdÞ. tu
Besides the above upper bounds of d, we can also use

d m
n�1e as a lower bound of the degeneracy d [35].

Algorithm 1. SemiDeg (G)

Input: G ¼ ðV;EÞ in the disk
Output: The degeneracy d of G
1: Let d be the degree set of all nodes in V ;
2: for each u 2 V do
3: Load NuðGÞ from disk;
4: hu Hindexðu;d; NuðGÞÞ;
5: umax argmaxu2V fhug; h fhv1 ; . . . ; hvng;
6: lb P

u2V du=2ðn� 1Þ; ub Hindex (umax, h, V);
7: while lb � ub do
8: mid bðlbþ ubÞ=2c;
9: update 1; R V ;
10: ĉu du for each u 2 V ;
11: while update ¼ 1 do
12: update 0;
13: for u 2 R s.t. ĉu < mid do
14: R R n fug; update 1;
15: Load NuðGÞ from disk;
16: for v 2 NuðGÞ \R do
17: ĉv ĉv � 1;
18: if R 6¼ ; then lb midþ 1; d mid;
19: else ub mid� 1;
20: return d;
21: Procedure Hindex (u, d, Vs)
22: bðiÞ 0 for all 1 � i � du;
23: for each v 2 Vs do
24: i minfdv; dug; bðiÞ bðiÞ þ 1;
25: sum 0; j du;
26: while j � 1 do
27: sum sumþ bðjÞ;
28: if sum � j then break;
29: j j� 1;
30: return j;

Key Idea of SemiDeg. The rationale of SemiDeg is to apply
a binary search in ½d m

n�1e; h
� to identify the precise value of d.
Specifically, we first examine an integer k 2 ½d m

n�1e; h
�, and

TABLE 1
Comparison of Algorithms (t ¼ log 1þ"=2n, g ¼ log 2 h)

Algorithm Running time Memory I/O Cost

[12], [13], [34] Oððmþ nÞtÞ OðnÞ OððmþnÞB tÞ
[14] Oðmþ nÞ Oðnðlog 2nÞ

�2
Þ OðmþnB Þ

[33] Oðlðmþ nÞÞ OðnÞ Oðl ðmþnÞB Þ
SemiDeg Oðtðmþ nÞgÞ OðnÞ Oðt ðmþnÞB gÞ
SemiDeg+ Oðtð~nþ ~mÞgÞ OðnÞ Oðt ð~nþ ~mÞ

B gÞ

3338 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

test whether G contains a k-core. If there exists a k-core in G,
then we have d � k, based on which we proceed to search in
½kþ 1; h
�; otherwise, we redirect our search to ½d m

n�1e; k� 1�.
To determine whether a k-core exists in G, we iteratively
remove the nodes in G with degrees smaller than k, until all
remaining nodes have degree at least k in the subgraph that
they induce. If all nodes in G are removed by this proce-
dure, then G must not contain a k-core; otherwise, the
remaining nodes should form a k-core.

Algorithm 1 shows the pseudo-code of SemiDeg. It first
computes the h-index hu for each node u using the Hindex
procedure (Lines 2-4). Then, it derives the h-index of h and
uses it as an upper bound of the degeneracy d (Line 6). Sub-
sequently, it applies the binary search procedure mentioned
previously (Lines 7-19). Finally, it returns the degeneracy
value d (Line 20). We illustrate SemiDeg using an example.

Example 2. Consider the graph G in Fig. 1. We have h ¼
f3; 3; 3; 3; 2; 1; 2; 1g for the nodes fv1; . . . ; v8g. The h-index
of h equals 3, i.e., h
 ¼ 3. On the other hand, we have
d m
n�1e ¼ 2. Accordingly, SemiDeg sets lb ¼ 2 and ub ¼ 3
and then performs the binary search procedure on ½2; 3�.
In its first iteration, SemiDeg attempts to find a 2-core
(i.e., mid ¼ 2) in G by iteratively deleting the nodes with
degrees smaller than 2. As a result, SemiDeg obtains a 2-
core fv1; v2; v3; v4; v5; v7g, and records d ¼ 2. Subsequently,
SemiDeg sets lb ¼ ub ¼ mid ¼ 3, and tries to find a 3-core
in G. This leads to a 3-core fv1; v2; v3; v4g, based on which
SemiDeg updates d by setting it to 3. After this step,
SemiDeg terminates, and returns d ¼ 3. tu
Theoretical Analysis. The correctness of SemiDeg is

guaranteed by Lemma 1. In the following, we analyze the
memory overhead and I/O complexity of SemiDeg. Let t be
the maximum number of iterations that SemiDeg requires,
for any k, to decide whether a k-core exists inG (see Lines 11-
17 in Algorithm 1).We have the following result.

Theorem 1. The memory, I/O costs, and CPU time complexity of
SemiDeg areOðnÞ,Oðlog 2h

�tðmþ nÞ=BÞ, andOðlog 2h

�

tðmþ nÞÞ respectively.
Proof. SemiDeg only needs to store a constant number of

OðnÞ-size arrays in the main memory, and hence, its
memory overhead is OðnÞ. For any k, SemiDeg requires
Oðtðmþ nÞ=BÞ I/Os to determine whether a k-core exists
in G. This is because, in each iteration (lines 13-17), the
algorithm sequentially scans the edge file at most once
which takes Oððmþ nÞ=BÞ I/Os in the worst case. Since
SemiDeg only examines Oðlog 2h

Þ values of k, the total
I/O complexity of SemiDeg is Oðtðmþ nÞlog 2h

=BÞ.
Clearly, in each iteration, the algorithm takes OðduðGÞÞ
CPU time to load the nodes NuðGÞ from the disk. There-
fore, the total CPU time complexity of the algorithm is
Oðlog 2h

 � tðmþ nÞÞ. tu
Note that both t and log 2h

 are often a small number
(t ¼ OðlognÞ as indicated in [45]). In that case, the I/O com-
plexity of SemiDeg is almost linear to ðmþ nÞ=B.

Remark. Note that both hðdÞ (the h-index of the degree vec-
tor d) and

ffiffiffiffiffiffiffi
2m
p

are well-known upper bounds for the
degeneracy. However, both of them are looser than h

(the upper bound used in Algorithm 1), which leads to
more iterations in the binary-search procedure of Algo-
rithm 1, and thus incurs higher I/O costs. We have empir-
ically verified that the performance of the algorithm using
hðdÞ or ffiffiffiffiffiffiffi

2m
p

as upper bounds will be inferior to that of
Algorithm 1, which uses h
 as an upper bound.

4.2 The SemiDeg+ Algorithm

Although SemiDeg can compute the degeneracy of G in an
I/O-efficient manner, it still suffers from two limitations.
First, it requires scanning G once to compute the h-index for
each node. When the graph is very large, such a graph scan-
ning procedure can be costly. Second, when deciding
whether a k-core exists in G, it requires scanning all nodes
with degrees smaller than k as well as the edges associated
with those nodes. This procedure may also incur consider-
able overheads in practice.

To overcome the limitation of SemiDeg, we propose an
enhanced algorithm dubbed SemiDeg+. To avoid comput-
ing the h-index for every node in G, SemiDeg+ utilizes the
h-index of d (i.e., the set of node degrees in G) as a “cheap”
upper bound of the degeneracy d. More importantly, when
testing whether a k-core exists in G, SemiDeg+ applies a
novel algorithm (referred to as PCore) that avoids accessing
nodes and edges as much as possible. In what follows, we
elaborate the PCore algorithm, and then present the details
of SemiDeg+.

Algorithm 2. PCore (G, R, ĉ, r)

Input: G ¼ ðV;EÞ in the disk, the working node set R,
upper bounds set ĉ, and an integer r

Output: The r-core R and the updated ĉ
1: r̂u 0 for all u 2 V ; /* r̂ is the counting set */
2: update 1;
3: while update ¼ 1 do
4: update 0;
5: for u 2 R s.t. r̂u < r do
6: Load NuðGÞ from disk;
7: if ĉu ¼ du then
8: ĉu Hindex (u, ĉ,NuðGÞ); /* h-index upper bound */
9: r̂u jNuðGÞ \Rj;
10: if r̂u < r then
11: R R n fug; update 1;
12: ĉu minfĉu; rg; /* update the upper bound */
13: for v 2 NuðGÞ \R do
14: r̂v r̂v � 1;
15: return(R; ĉ);

The PCore algorithm. PCore is based on the following
observation.

Observation 1. If G contains a k-core, the k-core must be in the
subgraph induced by the nodes set R ¼ fu ju 2 V; ĉu � kg,
where ĉu is a core number upper bound of u.

Proof. The nodes that are not in R cannot be contained in
the k-core, because their core number upper bounds are
smaller than k. tu
Based on Observation 1, if we are to determine whether

G contains a k-core, we only need to consider the subgraph
induced by R, denoted as GðRÞ. For convenience, we refer

LI ETAL.: I/O-EFFICIENTALGORITHMS FOR DEGENERACYCOMPUTATION ON MASSIVE NETWORKS 3339

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

to R as the working node set. The basic idea of PCore is to
maintain, for each node u 2 R, the degree of u in the
induced subgraph GðRÞ, and then iteratively deletes the
nodes whose degrees in GðRÞ are smaller than k. Algo-
rithm 2 shows the pseudo-code of PCore.

PCore takes as input G, a positive integer r, a set ĉ of
core number upper bounds, and a set R of nodes whose
core number upper bounds are at least r. It returns updated
versions of R and ĉ, such that (i) R ¼ ; if G does not contain
a r-core, (ii) otherwise, R is a r-core of G. Specifically,
PCore uses a set r̂ to maintain the degrees of the nodes in R.
Initially, r̂u ¼ 0 for any u 2 R (Line 1). Then, for each node
u 2 R with r̂u < r, PCore iteratively loads u’s neighbors
from the disk (Lines 5-14). If ĉu equals its original degree in
G, PCore updates ĉu by setting it to the h-index of u w.r.t.
the core number upper bounds of u’s neighbors, i.e.,
huðĉ; NuðGÞÞ (Lines 7-8). After that, PCore updates r̂u to the
number of neighbors of u in the working node set R
(Line 9). If r̂u < r, then u cannot be contained in the r-core;
in that case, PCore removes u from R (Line 11), and also
updates ĉu to r (Line 12), since the core number of umust be
smaller than r. Subsequently, for each neighbor v of u in the
working node set R, PCore updates r̂v (Lines 13-14). Finally,
PCore returns R and ĉ (Line 15). The following example
illustrates how PCoreworks.

Example 3. Consider the graph in Fig. 1. Suppose R ¼
fv2; v3; v4; v5g, ĉ ¼ f3; 4; 5; 4; 4; 1; 2; 1g for the nodes
fv1; . . . ; v8g, and r ¼ 4. First, PCore loads v2’s neighbors
from the disk, and computes the h-index of v2, which is
equal to 3 (lines 7-8 in Algorithm 2). Then, PCore updates
r̂v2 by 3, as v2 has three neighbors in R. Since r̂v2 < r ¼ 4,
PCore deletes v2 from R. Second, PCore loads v3’s neigh-
bors from the disk, and updates ĉv3 by hv3ðĉ; Nv3ðGÞÞ
which equals 3. Then, PCore updates r̂v3 by 2, as v3 has
two neighbors in R (R ¼ fv3; v4; v5g). PCore also removes
v3 from R, because r̂v3 < r. Similarly, we can easily
derive that PCore also deletes v4 and v5, and updates ĉv4
and ĉv5 by 3 and 2 respectively. tu
The following theorem shows the correctness of PCore.

Theorem 2. If G contains a r-core, then PCore returns the
r-core and a correct upper bound set ĉ.

Proof. Let R and R
 be the input and output working node
set of PCore, respectively. First, we show that if R
 6¼ ;,
then R
 is the r-core in G. This is because when PCore
terminates, r̂u � r for each u 2 R
. Thus, the nodes in R

satisfy the degree constraint of the r-core. To show that
R
 is the maximal subset satisfying such a degree con-
straint, we assume to the contrary that there is a superset
~R of R
 that also satisfies the degree constraint of the
r-core. Since R contains the r-core, we have ~R � R. As a
consequence, there is a node u 2 ~R and u =2 R
 that is
deleted by PCore. In that case, we have r̂u < r, which
contradicts to the assumption that ~R satisfies the degree
constraint.

Second, hðĉ; NuðGÞÞ is a valid upper bound of cu. If a
node u is removed PCore, we have cu < r. Thus, the
upper bound updating strategies of PCore (Lines 8 and
12 in Algorithm 2) is correct. As a result, PCore correctly
outputs a refined upper bounds set. tu

Details of SemiDeg+. We present the details of SemiDeg+
in Algorithm 3. The algorithm first computes d m

n�1e and hðdÞ
as the initial lower and upper bounds of d, respectively
(Lines 1-3). After that, it performs an iteratively-halving
procedure to tighten lower and upper bounds of d, and to
obtain a 2-approximation of d (Lines 4-10). In each iteration
of the procedure, the algorithm considers a working node
set R ¼ fu ju 2 V; ĉu � ubg (Line 5), and invokes PCore
determine whether a ub-core exists. After the iterative pro-
cedure terminates, the algorithm performs a binary search
over the interval ½lb; ub� to compute the exact value of d,
using PCore in each iteration (Lines 11-16). We illustrate the
algorithm using the an example.

Example 4. Consider the graph in Fig. 1. First, we have ĉ ¼
f3; 4; 5; 4; 4; 1; 2; 1g for the nodes fv1; . . . ; v8g. Clearly, we
have lb ¼ d m

n�1e ¼ 2 and hðdÞ ¼ 4. In the iteratively-halv-
ing procedure (Lines 4-10), SemiDeg+ first invokes
PCore with a working node set R ¼ fv2; v3; v4; v5g and
upper bounds set ĉ to identify whether a 4-core exists. As
shown in the Example 3, PCore would return R ¼ ; and
ĉ ¼ f3; 3; 3; 3; 2; 1; 2; 1g. Then, SemiDeg+ halves the upper
bound to hðdÞ=2 ¼ 2, and invokes PCore with inputs
R ¼ fv1; v2; v3; v4; v5; v7g, ĉ ¼ f3; 3; 3; 3; 2; 1; 2; 1g, and r ¼
2. It can be verified that PCore returns R ¼ fv1; v2;
v3; v4; v5; v7g and ĉ ¼ f3; 3; 3; 3; 2; 1; 2; 1g. Since there is a
2-core, SemiDeg+ terminates the iteratively-halving
procedure.

After that, SemiDeg+ performs a binary search over
the interval ½2; 4�. First, we have mid ¼ 3, and thus,
SemiDeg+ invokes PCore with inputs R ¼ fv2; v3; v4; v5g,
ĉ ¼ f3; 3; 3; 3; 2; 1; 2; 1g, and mid ¼ r ¼ 3. Accordingly,
PCore returns R ¼ fv2; v3; v4; v5g as a 3-core and keeps ĉ
unchanged. Then, SemiDeg+ records d ¼ 3 (Line 14), and
updates lb ¼ 4. Subsequently, SemiDeg+ invokes PCore
with inputs R ¼ ;, ĉ ¼ f3; 3; 3; 3; 2; 1; 2; 1g, and mid ¼
r ¼ 4. Since R ¼ ;, PCore immediately terminates with-
out incurring any I/O cost. Then, SemiDeg+ updates
ub ¼ mid� 1 ¼ 3. Since ub < lb, SemiDeg+ terminates
and returns d ¼ 3 as the final result. tu
Analysis of SemiDeg+. The correctness of SemiDeg+

directly follows the correctness of PCore, which is shown in
Theorem 2. In the following, we analyze the memory and I/
O overheads of SemiDeg+. Let t be the maximum number
of iterations needed in PCore to compute whether the work-
ing node set R contains a k-core, ~n be the maximum number
of nodes in R, and ~m be the total number of incident edges
of the nodes in R. We have the following result.

Theorem 3. The memory, I/O costs, and CPU time complexity
of SemiDeg+ are OðnÞ, Oðlog 2hðdÞ � tð~nþ ~mÞ=BÞ, and
Oðlog 2hðdÞ � tð~nþ ~mÞÞ respectively.

Proof. SemiDeg+ only needs to maintain two OðnÞ size
arrays, i.e., r̂ and ĉ, as well as the working node set R.
Therefore, the memory cost of SemiDeg+ is OðnÞ. As for
the I/O cost of SemiDeg+, we observe that in Lines 1-10
in Algorithm 3, SemiDeg+ has at most Oðlog 2hðdÞÞ ite-
rations, which incurs at most Oðlog 2hðdÞ � tð~nþ ~mÞ=BÞ
I/Os. Let ½lb; ub� be the binary-search interval in Lines 11-15.
The number of iterations required for a binary search on

3340 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

½lb; ub� is Oðlog 2ðub� lbÞÞ ¼ Oðlog 2dÞ � Oðlog 2hðdÞÞ, since
lb � d � ub � 2� lb. As a result, the total number of I/Os of
SemiDeg+ is Oðlog 2hðdÞ � tð~nþ ~mÞ=BÞ. Similarly, we can
easily derive that the CPU time complexity of SemiDeg+ is
Oðlog 2hðdÞ � tð~nþ ~mÞÞ, because the load-neighobrhood
operator takesOðduðGÞ time for each u. tu
ComparisonWithOtherAlgorithms.ComparedwithSemiDeg,

SemiDeg+ has the following advantages. First, SemiDeg+
only works on a small working node set R, which leads to
much higher efficiency. Second, SemiDeg+ does not com-
pute the h-index for every node, but only derive the h-index
for a node on-demand, which significantly reduces the num-
ber of I/Os. The reason is that in an iteration, computing the
h-index for all nodes takes Oððmþ nÞ=BÞ I/Os, while
SemiDeg+ only calculates the h-index for the nodes that are
contained in R and also meet the constraint r̂u < r (see
lines 5-8 in Algorithm 2), thus the I/O costs can be much
lower thanOððmþ nÞ=BÞ.

Algorithm 3. SemiDeg+ (G)

Input: G ¼ ðV;EÞ in the disk
Output: The degeneracy d of G
1: Let du be the degree of u 2 V ; ĉu du for each u 2 V ;
2: Let umax be the node that has the largest degree in G;
3: lb P

u2V du=2ðn� 1Þ; ub Hindex (umax, d, V);
4: while hd � lb do
5: R fu ju 2 V; ĉu � ubg;
6: ðC; ĉÞ PCore (G, R, ĉ, ub);
7: if C 6¼ ; then break;
8: else ub ub=2; ;/* halve the upper bound */
9: if ub � lb then lb ub;
10: ub 2 � ub; /* ub is a 2-approximation of degeneracy */
11: while lb � ub do
12: mid bðlbþ ubÞ=2c; R fu ju 2 V; ĉu � midg;
13: ðC; ĉÞ PCore (G, R, ĉ,mid);
14: if C 6¼ ; then lb midþ 1; d mid;
15: else ub mid� 1;
16: return d;

Compared with SemiCore [33], SemiDeg+ excels in effi-
ciency because (i) SemiCore needs to compute all k-cores
before obtaining the degeneracy d, which incurs considerable
I/O costs, and (ii) SemiDeg+ only derives a small number of
k-cores in its derviation of d, which is muchmore efficient.

Note that SemiDeg+ can also return a 2-approximate
degeneracy value when the iteratively-halving procedure
terminates (Lines 4-10). This approximate version of
SemiDeg+ (i.e., the iteratively-halving procedure) is not only
much more efficient than SemiStream [12], but it also
achieves better approximate ratio than SemiStream, as dem-
onstrated in Section 6.

Discussions. Any ordering of nodes in an undirected
graph G ¼ ðV;EÞ can generate a directed graph G0 with the
same nodes, in which each edge is oriented from the high-
order node in the low-order one. The degeneracy ordering
is an ordering such that the maximum out-degree of the
node in the yielded directed graph G0 is no larger than d

[12], [36]. Note that after obtaining the degeneracy d, it is
straightforward to compute the degeneracy ordering by
iteratively removing the nodes with degrees smaller than d.

5 DEGENERACY MAINTENANCE

In this section, we show how to incrementally maintain the
degeneracy under the semi-external setting, given that the
graph is updated by an edge insertion or deletion. Obvi-
ously, we can apply the SemiCore algorithm to maintain the
degeneracy. SemiCore, however, is inefficient for degener-
acymaintenance, because it has tomaintain all the core num-
bers of nodes when an edge is updated. Intuitively, an
efficient degeneracy maintenance algorithm should only
maintain the cmax-core, as the degeneracy has nothing to do
with other k-cores for k < cmax. The key issue is how can we
efficiently maintain the cmax-core without maintaining the
other k-cores.

Note that in our problem, the challenges that we face are
fundamentally different from the traditional k-core mainte-
nance problem. This is because in our problem, we only
have the core numbers of the nodes in the cmax-core, and no
core number is provided for the other nodes. Therefore, the
traditional core maintenance techniques [33], [46], [47],
which need to know all core numbers, cannot be used for
our problem. Below, we develop a novel cmax-core mainte-
nance approach based on the PCore algorithm to tackle this
challenge.

5.1 Handling Edge Deletion

We first consider the edge deletion case. Let ðu; vÞ be an
edge to be deleted. Recall that by Algorithm 3, we can
obtain the degeneracy cmax, the cmax-core denoted by Cmax,
as well as the degree set of nodes, i.e., d ¼ fdv1 ; . . . ; dvng.
Clearly, to maintain the degeneracy, it is sufficient to main-
tain the cmax-core Cmax. By the result shown in [46], Cmax

may be updated only if both u and v are contained in Cmax.
Thus, in the following, we only consider the case when both
u 2 Cmax and v 2 Cmax.

Let r̂u be the number of neighbors of u in Cmax, i.e., r̂u ¼
jNuðGÞ \ Cmaxj. We have the following result.

Lemma 2. After deleting ðu; vÞ, Cmax will be updated only if
r̂u < cmax or r̂v < cmax.

Proof. If r̂u < cmax (r̂v < cmax), we know that u (v) has less
than cmax neighbors in Cmax, thus its core number must
decrease by 1. Therefore, we must delete the node u (v)
from Cmax. On the other hand, if both r̂u � cmax and r̂v �
cmax, u and v are still contained in Cmax by the definition
of the cmax-core. tu
By Lemma 2, if r̂u < cmax or r̂v < cmax, we can invoke

PCore to maintain the cmax-core. Recall that PCore admits
three input parameters: the working node set, the upper
bounds set, and the parameter r. We can use Cmax as the
working node set, since it must contain the updated
cmax-core. We update the degrees du and dv after removing
ðu; vÞ, and make use of the updated degree sets d as the
upper bounds set. For the parameter r, we set it to cmax.
Clearly, we can obtain a cmax-core, if it exists, by invoking
PCore with these parameters. Note that PCore may return
an empty set if the cmax-core does not exist. In this case, the
entire cmax-core is vanished after deleting ðu; vÞ. Thus, we
has to compute the ðcmax � 1Þ-core, as an edge deletion can
only decrease the maximum core number (degeneracy) by 1

LI ETAL.: I/O-EFFICIENTALGORITHMS FOR DEGENERACYCOMPUTATION ON MASSIVE NETWORKS 3341

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

based on the result shown in [46]. Again, we are able to
apply the PCore algorithm to compute ðcmax � 1Þ-core. It is
important to note that the updated ðcmax � 1Þ-core may con-
tains the original cmax-core. Therefore, we cannot use Cmax

as the working node set. Instead, we set R ¼ fuju 2 V; du �
cmax � 1g, because R obviously contains the ðcmax � 1Þ-core.
Also, we set the updated degree set as the upper bounds
set, and r ¼ cmax � 1. The detailed implementation of our
algorithm is depicted in Algorithm 4.

Example 5. Consider the graph in Fig. 1. Suppose that we
delete an edge ðv1; v2Þ. Clearly, before deleting ðv1; v2Þ, we
have d ¼ f3; 4; 5; 4; 4; 1; 2; 1g, cmax ¼ 3, and Cmax ¼ fv1; v2;
v3; v4g. First, the algorithm updates dv1 ¼ 2 and dv2 ¼ 3.
Then, the algorithm calculates r̂v1 ¼ 2 and r̂v2 ¼ 2, because
both v1 2 Cmax and v2 2 Cmax (Lines 2-3). Since r̂v1 < cmax,
the algorithm invokes PCore to compute the cmax-core
(Lines 4-5). We can easily derive that PCore returns ;, as
there is no 3-core after deleting ðv1; v2Þ. Thus, the algorithm
computes the ðcmax � 1Þ-core by using the working node
set R ¼ fuju 2 V; du � 2g ¼ fv1; . . . ; v5; v7g (Lines 6-8).
PCorewill returnR as the ðcmax � 1Þ-core, and theDeletion
algorithmupdates cmax byCmax accordingly (Lines 6-8). tu
Analysis of Deletion. The correctness of Algorithm 4 can be

guaranteed by Lemma 2 andTheorem 2. Clearly, thememory
overhead of Algorithm 4 is OðnÞ. Below, we mainly analyze
the I/O complexity and the CPU time complexity of Algo-
rithm 4. Let t be the number of iterations taken by PCore, ~n
be the number of nodes in the working node set R, and ~m be
the total number of incident edges of the nodes inR.

Algorithm 4. Deletion (G, ðu; vÞ, d, cmax, Cmax)

Input: Graph G, edge ðu; vÞ, degree set d, cmax,
and the cmax-core Cmax

Output: The updated degeneracy cmax, cmax-core Cmax, and d
1: Update du and dv after removing edge ðu; vÞ;
2: if u 2 Cmax and v 2 Cmax then
3: r̂u jNuðGÞ \ Cmaxj; ; r̂v jNvðGÞ \ Cmaxj;
4: if r̂u < cmax or r̂v < cmax then
5: ðCmax; ĉÞ PCore (G, Cmax, d, cmax);
6: if Cmax ¼ ; then
7: cmax cmax � 1;
8: ðCmax; ĉÞ PCore (G, fuju 2 V; du � cmaxg, d, cmax);
9: return (d, cmax, Cmax);

Theorem 4. To handle an edge ðu; vÞ, the I/O and CPU time
complexity of Algorithm 4 is Oðtð ~mþ ~nÞ=BÞ and Oðtð ~mþ
~nÞÞ respectively, if the cmax-core is updated. Otherwise, the I/O
and CPU time complexity is Oððdu þ dvÞ=BÞ and Oððdu þ
dvÞÞ respectively.

Proof. Clearly, if the cmax-core is not updated, Algorithm 4
only needs to update du and dv, as well as compute r̂u and
r̂v, which can be done by loading the neighbors of u and v
from the disk once. Thus, in this case, the I/O and CPU
time complexity are Oððdu þ dvÞ=BÞ and Oðdu þ dvÞ
respectively. If the cmax-core is updated, Algorithm 4 has
to invoke PCore to maintain the cmax-core, thus its I/O
and CPU time complexity are the same as those of PCore,
which are Oðtð ~mþ ~nÞ=BÞ and Oðtð ~mþ ~nÞÞ respectively.tu

In the experiments, we show that our algorithm is very
efficient in practice, because the cmax-core is updated infre-
quently even when the graph is frequently updated. On the
other hand, the number of iterations taken by PCore to com-
pute the cmax-core can be bounded by OðlognÞ in random
graphs, as indicated in [45]. Thus, even if the cmax-core is
updated, the I/O complexity of our algorithm is expected to
be bounded by Oðlogn� ð ~mþ ~nÞ=BÞ.

5.2 Handling Edge Insertion

Here we discuss the edge insertion case. Let ðu; vÞ be an edge
to be inserted. The algorithm first updates the degrees du and
dv after adding ðu; vÞ. Then, it is easy to show that Cmax may
be updated only if both du � cmax and dv � cmax. To further
improve the efficiency, we can compute the h-index of u (v),
denoted by hu (hv), based on the updated degrees. Based on
the h-index, we can derive the following result.

Lemma 3. After inserting ðu; vÞ, Cmax cannot be update if hu <
cmax or hv < cmax.

Proof. Suppose, without loss of generality, that hu < cmax.
Then, we have cu < cmax, as hu is an upper bound of cu.
Clearly, u does affect Cmax, and the number of neighbors
of v in Cmax also keeps unchanged. As a result, no node’s
core number will be updated in this case. tu
By Lemma 3, we only need tomaintain the cmax-corewhen

both hu � cmax and hv � cmax. Below, we assume that hu �
cmax and hv � cmax, and consider two cases. First, if both u 2
Cmax and v 2 Cmax, the cmax-core may contain a
ðcmax þ 1Þ-core after adding ðu; vÞ. Thus, we invoke PCore
with working node set R ¼ Cmax, upper bounds set d, and
r ¼ cmax þ 1 to compute the ðcmax þ 1Þ-core. If such a
ðcmax þ 1Þ-core exists, we update Cmax by the ðcmax þ 1Þ-core,
and increase cmax by 1. Otherwise, we keep both cmax and
Cmax unchanged, because both u and v are already in Cmax

and thereby the insertion of ðu; vÞ does not affect Cmax. Sec-
ond, if there exist at least one node of u and v that are not in
Cmax, we invoke PCore with parameters R ¼ fuju 2 V; du �
cmaxg, d, and r ¼ cmax to compute the cmax-core. This is
because under this case, the cmax-core may be expanded after
inserting an edge ðu; vÞ, and therefore we need to invoke
PCore to recompute the cmax-core. Moreover, in this case, the
cmax-core does not contain a ðcmax þ 1Þ-core. The detailed
implementation of our algorithm is given in Algorithm 5.

Example 6. Consider the graph in Fig. 1. Suppose that we
have already deleted the edge ðv1; v2Þ, and we aim to
maintain the degeneracy after adding back ðv1; v2Þ.
Clearly, by Example 5, we have d ¼ f2; 3; 5; 4; 4; 1; 2; 1g,
cmax ¼ 2, and Cmax ¼ fv1; . . . ; v5; v7g for the graph in Fig. 1
after deleting ðv1; v2Þ. When inserting back ðv1; v2Þ, the
algorithm first updates dv1 ¼ 3 and dv2 ¼ 4 (Line 1 in
Algorithm 5). Since both dv1 � cmax and dv2 � cmax, the
algorithm computes hv1 ¼ 3 and hv2 ¼ 3 (Lines 2-3). Then,
since (i) hv1 � cmax and hv2 � cmax, and (ii) both v1 2 Cmax

and v2 2 Cmax, the algorithm invokes PCorewith parame-
tersR ¼ Cmax, d, and r ¼ 3 to compute the 3-core (Lines 4-
6). Clearly, the algorithm is able to obtain a 3-core
fv1; . . . ; v4g. Thus, the algorithm updates Cmax by this 3-
core, and sets cmax ¼ 3 (Lines 7-8). tu

3342 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

Analysis of Insertion. The correctness of Algorithm 5 can
be guaranteed by Lemma 3 and Theorem 2. Similar to Algo-
rithm 4, the memory overhead of Algorithm 5 is OðnÞ. The
I/O and CPU time complexity of Algorithm 4 are Oðtð ~mþ
~nÞ=BÞ and Oðtð ~mþ ~nÞÞ respectively, if both hu � cmax and
hv � cmax after inserting ðu; vÞ. Otherwise, the I/O and CPU
time complexity are Oððdu þ dvÞ=BÞ and Oðdu þ dvÞ respec-
tively. Since Cmax is infrequently update even when the
graph is rapidly changed, Algorithm 5 is very efficient in
practice, as confirmed in our experiments.

Algorithm 5. Insertion (G, ðu; vÞ, d, cmax, Cmax)

Input: Graph G, edge ðu; vÞ, degree set d, cmax,
and the cmax-core Cmax

Output: The updated degeneracy cmax, cmax-core Cmax, and d
1: Update du and dv after inserting edge ðu; vÞ;
2: if du � cmax and dv � cmax then
3: hu Hindexðu; d;NuðGÞÞ; hv Hindexðv; d;NvðGÞÞ;
4: if hu � cmax and hv � cmax then
5: if u 2 Cmax and v 2 Cmax then
6: ðC; ĉÞ PCore ðG;Cmax;d; cmax þ 1Þ;
7: if C 6¼ ; then
8: cmax cmax þ 1; Cmax C;
9: else
10: ðCmax; ĉÞ PCore (G, fuju 2 V; du � cmaxg, d, cmax);
11: return(d, cmax, Cmax);

6 EXPERIMENTS

In this section, we first conduct extensive experiments to
evaluate the efficiency of the proposed algorithms. Then,
we systematically evaluate the degeneracies of 150 publicly
available real-world networks.

6.1 Experimental Setup

We collect 150 various real-world networks from four differ-
ent sources, including (1) the Koblenz Network Collection
(http://konect.uni-koblenz.de/), (2) the Stanford Network
Collection (http://snap.stanford.edu/data/), (3) the Web
Graph Collection (http://webgraph.di.unimi.it/), and the
ASU Network Collection (http://socialcomputing.asu.edu/
pages/datasets). The detailed statistics of these networks are
shown in Table 2. Note that the original GSH dataset
released at http://webgraph.di.unimi.it/is very large which
takes near 1TB after decompressing. Due to the hardware
limit, our GSH dataset in Table 2 is a subgraph generated by
randomly sampling edges from the originalGSH graph.

We implement six various algorithms: SemiStream,
Sampling, SemiCore, SemiDeg, SemiDeg+, andSemiDegAppr.
SemiStream is the semi-streaming approximate algorithm
proposed in [12] (similar idea was also proposed in [13] and
[34]). For SemiStream, we set the parameter a ¼ 4 to achieve
good I/O performance. Sampling is a one-pass streaming
algorithm [14] which is based on a carefully-designed sam-
pling technique. Recall that Sampling uses Oðnðlog 2nÞ

�2
Þ space.

In our experiments, we set � ¼ 2 to ensure that the algorithm
uses aroundOðnÞmemory (e.g., if � ¼ 2 and log 2n ¼ 32, then
nðlog 2nÞ

�2
¼ 5n=4). SemiCore denotes the state-of-the-art semi-

external core decomposition algorithm [33]. SemiDeg and
SemiDeg+ denote Algorithm 1 and Algorithm 3 respectively.

SemiDegAppr is essentially the iteratively-halving procedure
in Algorithm 3 which can generate a 2-approximate solution
of the degeneracy.

Experimental Settings. All algorithms are implemented in
C++, using gcc compiler with no compilation flag. All experi-
ments are conducted on a PC with a 2.4GHz Xeon CPU,
DDR4 2400 MHZmemory (16GB), and 7200 RPM SATA III 1
TB disk with 600MB/s data transfer rate, running Red Hat
Linux 6.4. We conduct each experiment independently on
this PC, and thus any two experiments do not compete for
resources. For all experiments, the time cost of each algo-
rithm is measured by the amount of wall-clock time elapsed
during the algorithms’ execution. For each input graph G,
we organize G in the disk using the graph storage method
described in Section 2. In addition, each node’s adjacency list
is sorted by the nodes’ IDs using a standard external-mem-
ory sorting algorithm. For all our algorithms, we only store
the node information (e.g., the core number upper bounds c)
in the main memory. For the memory costs, we record the
maximum amount of memory used by each algorithm dur-
ing the algorithms’ execution. Recall that when the algorithm
visits the neighborhood of a node, it needs to load the adja-
cency list of that node from the disk, thus incurring I/O
costs. We make use of the standard method as used in [33],
[38] to record the number of I/Os for various algorithms.

6.2 Performance Studies

We evaluate the performance of different I/O-efficient algo-
rithms for degeneracy measurement and maintenance using
two sets of networks: 1) five medium-sized graphs which are
ctPaTe, LiveJour, Hollywood, Orkut, and Arabic; and 2) five
massive graphs, including IT, Twitter, SK, UK, and GSH.
ctPaTe is a citation network, and Hollywood is a co-actor net-
work. LiveJour, Orkut, and Twitter are social networks.
Arabic, IT,SK,UK, andGSH areweb graphs. The detailed sta-
tistics of these networks are shown in Table 2 (in bold font).

Results for Degeneracy Computation. Fig. 2 reports the run-
ning time, I/O cost, and memory overhead of various algo-
rithms for degeneracy computation. As shown in Figs. 2a and
2b, Sampling is the fastest algorithm on most datasets, fol-
lowed by SemiDegAppr, SemiDeg+, SemiStream, SemiCore,
and SemiDeg. We can also observe that Sampling is slightly
faster than SemiDegAppr, but it cannot work on the largest
GSH dataset due to its high memory usage. Generally,
SemiDegAppr is nearly 2 times faster than SemiDeg+, and
SemiDeg+ is around one order of magnitude faster than
SemiCore.We can also observe thatSemiDeg+ is significantly
faster than SemiStream in massive graphs. For example, on
the largest network GSH, SemiDegAppr takes 385 seconds,
SemiDeg+ consumes 633 seconds, SemiStream takes 2,808
seconds, and SemiCore uses 7,218 seconds to compute the
degeneracy. It is worth mentioning that SemiDeg is not very
efficient, since it needs to scan a large portion of the graph in
each iteration. Thus, for massive graphs, we do not show the
results of SemiDeg. Figs. 2c 2d show the running time of dif-
ferent algorithms plus the preprocessing time (i.e., the sorting
cost). On the medium-sized graphs, the results are consistent
with the results shown in Figs. 2a and 2b. On the massive
graphs, however, most algorithms except SemiCore achieve
similar performance, because the preprocessing time often
dominates the time for computing the degeneracy.

LI ETAL.: I/O-EFFICIENTALGORITHMS FOR DEGENERACYCOMPUTATION ON MASSIVE NETWORKS 3343

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

http://konect.uni-koblenz.de/
http://snap.stanford.edu/data/
http://webgraph.di.unimi.it/
http://socialcomputing.asu.edu/pages/datasets
http://socialcomputing.asu.edu/pages/datasets
http://webgraph.di.unimi.it/

Similarly, in Figs. 2e and 2f, we can clearly see that the
results of the I/O costs are consistent with the results of the
running time. Sampling is clearly the winner among all
competitors, followed by SemiDegAppr, SemiDeg+,
SemiStream, SemiCore, and SemiDeg. Both SemiDegAppr
and SemiDeg+ use one order of magnitude less I/Os than
SemiCore. For the memory overhead (reported in Figs. 2g
and 2h), Sampling uses much more space than the other
algorithms. All the other algorithms exhibit similar memory
usages, because all those algorithms consume linear space.
Note that Sampling is out of memory when running on the
GSH dataset. These observations confirm our results shown
in Section 4.

Disk-Based versus in-Memory Algorithms.Here we compare
the time costs between SemiDeg+ and the state-of-the-art in-
memory degeneracy compuation algorithm [48], called
BucketCore, when the graph can fit in the main memory.
BucketCore is an optimized in-memory core decomposition
algorithm using a bucketing technique [48] which was
shown to be faster than the traditional peeling-based core

decomposition algorithm [32]. Note that for BucketCore, the
input graph is stored in the main memory. However, for
SemiDeg+, we only store the node information in the main
memory and the edges of the input graph are stored in the
disk, even if the whole graph can fit in the main memory.
Fig. 3 shows the running time of SemiDeg+ and BucketCore
on the five medium-sized graphs. As can be seen, SemiDeg+
is at least twice faster than BucketCore on these datasets. For
example, on Arabic, SemiDeg+ takes 6.6 seconds, while
BucketCore consumes 25.1 seconds to compute the degener-
acy. The reason could be that SemiDeg+ directly computes
the degeneracy based on an efficient binary-search proce-
dure (with pruning optimization), while BucketCore needs
to compute the core decomposition to derive the degeneracy
which is typically more expensive than the binary-search
procedure. These results indicate that the core-decomposi-
tion based algorithm is less efficient than the binary-search
based algorithm for degeneracy computation.

Random versus Sequential I/O Costs. Recall that in
SemiDeg+, the algorithm may incurs both random and

TABLE 2
Networks Statistics and the Degeneracy Results (1K=1,000, 1M=1,000,000, and 1G=1,000,000,000)

3344 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

sequential I/O costs. When the algorithm starts to load the
neighborhood of a node from the disk, the algorithm may
incur a random I/O, because it needs to seek the position of
that node’s adjacency list in the disk. When loading an adja-
cency list into the main memory, the algorithm will take
sequential I/Os, because an adjacency list may occupy sev-
eral consecutive blocks in the disk. In this experiment, we
study the number of random and sequential I/Os taken by
SemiDeg+. Fig. 4 reports our results on the five massive
graphs. We can see that the number of sequential I/Os is
around 10 times larger than that of random I/Os on most
datasets. Since the sequential I/Os are typically much
cheaper than the random I/Os, thus our SemiDeg+ algo-
rithm can be very efficient in practice, which are consistent
with our previous results.

Comparison of Approximation Algorithms.Here we evaluate
the approximation preformation of SemiStream, Sampling,
and SemiDegAppr. It should be noted that in SemiStream, a
large parameter awill lead to better I/O performance, but it
may degrade the approximation performance. In the previ-
ous experiment, we have already shown that both
SemiDegAppr and SemiDeg+ are much more efficient than
SemiStream even when a ¼ 4. Here we show that
SemiDegAppr is also much better than SemiStream (with
a ¼ 4) in terms of the approximation performance. The
results are shown in Fig. 5. As can be seen, the degeneracy
obtained by SemiDegAppr is near to optimal on many data-
sets, whereas both SemiStream and Sampling typically
obtain a loose approximation of the degeneracy. For exam-
ple, on theUK network, the exact degeneracy is 10,424 , while
the degeneracies obtained by SemiDegAppr, SemiStream
and Sampling are 10468, 20,828, and 21,860 respectively.
These results suggest that SemiDegAppr is much better than
SemiStream and Sampling for degeneracy computation on
massive graphs in terms of approximation performance.

Scalability Testing. In this experiment, we show the scal-
ability of SemiDegAppr and SemiDeg+ using Twitter and
UK datasets. Similar results can also be observed on the
other datasets. For both Twitter and UK, we generate four
subgraphs by randomly sampling edges from 20 to 100 per-
cent, and evaluate the time and I/O costs of our algorithms
on these subgraphs.The results are shown in Fig. 6. As can
be seen, both the running time and I/O costs of our algo-
rithms increase as jEj increases. The curves of both
SemiDegAppr and SemiDeg+ are nearly linear, indicating
that our algorithms scale very well in practice.

Results for Degeneracy Maintenance. In this experiment, we
evaluate the performance of SemiDeg+ and SemiCore for
degeneracy maintenance, since only SemiDeg+ and
SemiCore can be used for degeneracy maintenance. We ran-
domly delete and insert 1,000 edges in the graph for each
test. The maintenance costs of each algorithm for edge dele-
tion and edge insertion are the averaged results over 1,000
deletions and insertions respectively. The experimental
results are shown in Fig. 7. From Fig. 7a, we can clearly see

Fig. 2. Results of various algorithms for degeneracy computation.

Fig. 3. Comparison SemiDeg+ with BucketCore.

Fig. 4. Random versus sequential I/O costs for SemiDeg+.

Fig. 5. Approximation performance of different algorithms.

LI ETAL.: I/O-EFFICIENTALGORITHMS FOR DEGENERACYCOMPUTATION ON MASSIVE NETWORKS 3345

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

that SemiDeg+ is at least three orders of magnitude faster
than SemiCore for handling an edge deletion on most net-
works. To process an edge insertion, SemiDeg+ is one order
of magnitude faster thanSemiCore onHollywood and Twitter,
and at least three orders of magnitude faster than SemiCore
on IT, UK, and GSH. For example, on the Twitter dataset,
SemiCore spends 115ms and 304ms to handle an edge dele-
tion and insertion respectively, whereasSemiDeg+ takes only
0.02ms and 26ms to process an edge deletion and insertion
respectively. This is because SemiDeg+ only needs to main-
tain the cmax-core, whileSemiCore has tomaintain all the core
numbers. Likewise, from Fig. 7b, we are able to derive similar
results for the I/O costs of SemiDeg+ and SemiCore. These
results confirm the theoretical analysis in Section 5.

6.3 Degeneracy of Different Networks

Degeneracy of Real-World Networks. In this experiment, we
systematically evaluate the degeneracies of 150 real-world
networks. The results are reported in Table 2. From Table 2,
we can see that citation networks, collaboration networks,
infrastructure networks, biology networks, software net-
works, lexical networks, computer networks, P2P networks,
communication networks, and online contact networks have
relatively small degeneracies. However, for some large social
networks and hyperlink networks, the degeneracy can be
very large. For example, the Twitter social network has a
degeneracy 2,488, and the web graph UK has a degeneracy
10,424.

Fig. 8 depicts the degeneracy distributions of different
types of networks. As can be seen, there are 111 networks that
have a degeneracy smaller than 200, validating that many
real-world networks indeed have small degeneracies. From

Fig. 8c, we can observe that near one-half hyperlink networks
have degeneracies larger than 800. Moreover, as reported in
Table 2, all massive web graphs have very large degeneracies.
From Fig. 8d, we can see that 80 percent social networks have
small degeneracies (d � 200), and the remaining 20 percent
social networks have relatively large degeneracies. These
results indicate that the “small-degeneracy” assumption
made in many existing work [2], [17], [22], [29], [35] might be
excessively optimistic for web graphs and social networks.

Node distributions of large-degeneracy networks. Here we
conduct an experiment to investigate why some real-world
networks have large degeneracies. Specifically, we study
the distributions of high-degree and high h-index nodes on
the large-degeneracy networks. Fig. 9 shows the results on the
Twitter and UK datasets. Similar results can also be obtained
on the other large-degeneracy networks. As can be seen, both
Twitter and UK contain a significant number of high-degree
and high h-index nodes. These high-degree and high h-index
nodes probably form a large dense subgraph which leads to
the network having a large degeneracy. For example, on the
UK dataset, there are 10,428 nodes that have h-index values no
smaller than 10,000. By the definition of h-index, those high
h-index nodes very likely form a dense subgraph, thus result-
ing in a large degeneracy value of UK.Degeneracy of Random
Graphs. In this experiment, we evaluate the degeneracies of
random graphs. We generate two sets of random graphs
(with 10-million nodes): the power-law random graphs and
the classic Erdos-Renyi (ER) random graphs. For the power-
law random graphs, we vary the power-law degree exponent
g from 2 to 3.4, because most real-world power-law networks
fall into this range [49]. For the ER graphs, we vary the
number of edges from 10 million to 80 million. The results
are shown in Fig. 10. From Fig. 10a, we can see that the

Fig. 6. Scalability testing (vary jEj).

Fig. 7. Results of SemiDeg+ and SemiCore for degeneracy
maintenance.

Fig. 8. Degeneracy distributions of real-world networks.

Fig. 9. Degree and h-index distributions of large-degeneracy graphs.

3346 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

degeneracy of the power-law graph decreases with an
increasing g. Moreover, the degeneracy of the power-law
graph is very small if g > 2:2. These results further confirm
that most real-world graphs have small degeneracies. On the
other hand, the degeneracy of the ER graph increases as jEj
grows. This is because the density of the graph increases with
increasing jEj, which may give rise to large k-cores [50], and
therefore the degeneracymay increase.

Application for Community Detection. Note that our algo-
rithms can also output the k-core with the largest k, termed
as the degeneracy k-core. Here we show that the degeneracy
k-core is often a very dense subgraph in real-life graphs,
indicating that it can be used to detect communities in real-
life graphs. Table 3 shows the detailed statistical informa-
tion of the degeneracy k-cores on four massive graphs. As
can be seen, the number of nodes of the degeneracy k-core
is close to the degeneracy number and its density is near to
1, suggesting that the degeneracy k-core is very close to a
clique. These results indicate that the proposed I/O-efficient
algorithms can be applied to identify densely-connected
communities in massive graphs.

7 CONCLUSION

In this paper, we propose a novel I/O-efficient algorithm
using OðnÞ memory to compute the degeneracy of massive
graphs. We also devise an I/O-efficient degeneracy mainte-
nance algorithm for dynamic graphs. Based on our algo-
rithms, we perform a comprehensive evaluation of the
degeneracy over 150 real-world graphs. The results suggest
that most real-world graphs have small degeneracies, except
for some large social networks and web graphs, in which the
degeneracy can be up to several thousands. The experimental
results also demonstrate that the proposed algorithms are
substantially faster than the state-of-the-art algorithms for
degeneracy computation andmaintenance.

ACKNOWLEDGMENTS

This work was partially supported by (i) NSFC Grants
61772346, U1809206, 61732003; (ii) National KeyR&DProgram
of China 2018YFB1004402; (iii) Beijing Institute of Technology

Research Fund Program for Young Scholars; (iv) Research
Grants Council of the Hong Kong SAR, China No. 14202919
and 14203618; (v) ARCARCFT200100787.

REFERENCES

[1] D. Eppstein and D. Strash, “Listing all maximal cliques in large
sparse real-world graphs,” in Proc. 10th Int. Symp. Exp. Algorithms,
2011, pp. 364–375.

[2] D. Eppstein, M. L€offler, and D. Strash, “Listing all maximal cli-
ques in large sparse real-world graphs,” ACM J. Exp. Algorithmics,
vol. 18, 2013, pp. 1–21.

[3] A. V. Goldberg, “Finding a maximum density subgraph,” Univ.
California at Berkeley, Berkeley, CA, Rep. no. 94720, 1984.

[4] Y. Dourisboure, F. Geraci, and M. Pellegrini, “Extraction and clas-
sification of dense communities in the web,” in Proc. 16th Int.
Conf. World Wide Web, 2007, pp. 461–470.

[5] Y. Dourisboure, F. Geraci, and M. Pellegrini, “Extraction and clas-
sification of dense implicit communities in the web graph,” ACM
Trans. Web, vol. 3, no. 2, pp. 7:1–7:36, 2009.

[6] L. Qin, R. Li, L. Chang, and C. Zhang, “Locally densest subgraph
discovery,” in Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2015, pp. 965–974.

[7] N. Tatti and A. Gionis, “Density-friendly graph decomposition,”
in Proc. 24th Int. Conf. World Wide Web, 2015, pp. 1089–1099.

[8] Z. Li et al., “Discovering hierarchical subgraphs of k-core-truss,”
Data Sci. Eng., vol. 3, no. 2, pp. 136–149, 2018.

[9] G. Buehrer and K. Chellapilla, “A scalable pattern mining
approach to web graph compression with communities,” in Proc.
Int. Conf. Web Search Data Mining, 2008, pp. 95–106.

[10] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X. Zhang, “Dense
subgraphs with restrictions and applications to gene annotation
graphs,” in Proc. 14th Annu. Int. Conf. Res. Comput. Mol. Biol., 2010,
pp. 456–472.

[11] D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense
subgraphs in massive graphs,” in Proc. 31st Int. Conf. Very Large
Data Bases, 2005, pp. 721–732.

[12] M. Farach-Colton and M. Tsai, “Computing the degeneracy of
large graphs,” in Proc. LATIN 11th Latin Amer. Symp. Theor.
Inform., 2014, pp. 250–260.

[13] M. T. Goodrich and P. Pszona, “External-memory network analy-
sis algorithms for naturally sparse graphs,” in Proc. 19th Eur. Conf.
Algorithms, 2011, pp. 664–676.

[14] M. Farach-Colton and M. Tsai, “Tight approximations of degener-
acy in large graphs,” in Proc. LATIN 12th Latin Amer. Symp. Theor.
Inform., 2016, pp. 429–440.

[15] C. S. J. A. Nash-Williams, “Decomposition of finite graphs into
forests,” J. London Math. Soc., vol. 39, no. 1, pp. 12–12, 1964.

[16] B. Bollobas, Extremal Graph Theory. New York, NY, USA: Dover
Publications, 2004.

[17] X. Hu, Y. Tao, and C.-W. Chung, “Massive graph triangulation,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 325–336.

[18] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algo-
rithms,” SIAM J. Comput., vol. 14, no. 1, pp. 210–223, 1985.

[19] J. Wang and J. Cheng, “Truss decomposition in massive
networks,” Proc. VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.

[20] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-
truss community in large and dynamic graphs,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2014, pp. 1311–1322.

[21] L. Chang, W. Li, X. Lin, L. Qin, and W. Zhang, “pSCAN: Fast and
exact structural graph clustering,” in Proc. IEEE 32nd Int. Conf.
Data Eng., 2016, pp. 253–264.

[22] R. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search in
largenetworks,”Proc.VLDBEndowment, vol. 8, no. 5, pp. 509–520, 2015.

[23] R. Li, L. Qin, J. X. Yu, and R. Mao, “Finding influential communities
inmassive networks,”VLDB J., vol. 26, no. 6, pp. 751–776, 2017.

[24] L. Chang,C. Zhang, X. Lin, andL.Qin, “Scalable top-k structural diver-
sity search,” in Proc. IEEE 33rd Int. Conf. Data Eng., 2017, pp. 95–98.

[25] H. N. Gabow and H. H. Westermann, “Forests, frames, and games:
Algorithms for matroid sums and applications,” Algorithmica, vol. 7,
no. 5&6, pp. 465–497, 1992.

[26] R. G. Downey and M. Fellows, Parameterized Complexity, Berlin,
Germany: Springer, 1999.

[27] P. A. Golovach and Y. Villanger, “Parameterized complexity for
domination problems on degenerate graphs,” in Proc. Int. Work-
shop Graph-Theoretic Concepts Comput. Sci., 2008, pp. 195–205.

TABLE 3
The Degeneracy k-Core Community

Dataset Degeneracy jVCmax j jECmax j Density

IT 3,224 3,240 5,247,052 0.9999
Twitter 2,488 3,192 4,585,552 0.9004
SK 4,510 4,514 10,185,835 0.9999
UK 10,424 10,427 54,355,948 0.9999

Fig. 10. Degeneracy of random graphs (jV j ¼ 10M).

LI ETAL.: I/O-EFFICIENTALGORITHMS FOR DEGENERACYCOMPUTATION ON MASSIVE NETWORKS 3347

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

[28] N. Alon and S. Gutner, “Linear time algorithms for finding a dom-
inating set of fixed size in degenerated graphs,”Algorithmica, vol. 54,
no. 4, pp. 544–556, 2009.

[29] C. Lenzen and R. Wattenhofer, “Minimum dominating set approxi-
mation in graphs of bounded arboricity,” in Proc. Int. Symp. Distrib.
Comput., 2010, pp. 510–524.

[30] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given
length cycles,” Algorithmica, vol. 17, no. 3, pp. 209–223, 1997.

[31] D. W. Matula and L. L. Beck, “Smallest-last ordering and cluster-
ing and graph coloring algorithms,” J. ACM, vol. 30, no. 3,
pp. 417–427, 1983.

[32] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores decom-
position of networks,” CoRR, Tech. Rep. 0310049, vol. cs.DS/0310049,
2003.

[33] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/O efficient core
graph decomposition at web scale,” in Proc. IEEE Int. Conf. Data
Eng., 2016, pp. 133–144.

[34] B. Bahmani, R. Kumar, and S. Vassilvitskii, “Densest subgraph in
streaming and MapReduce,” Proc. VLDB Endowment, vol. 5, no. 5,
pp. 454–465, 2012.

[35] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter, “Arboricity, h-index,
anddynamic algorithms,” Theor. Comput. Sci., vol. 426, pp. 75–90, 2012.

[36] D. R. Lick and A. T. White, “k-degenerate graphs,” Can. J. Math.,
vol. XXII, no. 5, pp. 1082–1096, 1970.

[37] S. B. Seidman, “Network structure and minimum degree,” Soc.
Netw., vol. 5, no. 3, pp. 269–287, 1983.

[38] A. Aggarwal and J. S. Vitter, “The input/output complexity of
sorting and related problems,” Commun. ACM, vol. 31, no. 9,
pp. 1116–1127, 1988.

[39] J. Cheng, Y. Ke, S. Chu, and M. T. €Ozsu, “Efficient core decompo-
sition in massive networks,” in Proc. IEEE 27th Int. Conf. Data
Eng., 2011, pp. 51–62.

[40] A. Montresor, F. D. Pellegrini, and D. Miorandi, “Distributed k-
core decomposition,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 2, pp. 288–300, Feb. 2013.

[41] J. E. Hirsch, “An index to quantify an individual’s scientific
research output,” Proc. Nat. Acad. Sci. United States America,
vol. 102, no. 46, pp. 16 569–16 572, 2005.

[42] D. Eppstein and E. S. Spiro, “The h-index of a graph and its appli-
cation to dynamic subgraph statistics,” J. Graph. Algorithms Appl.,
vol. 16, no. 2, pp. 543–567, 2012.

[43] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maximal
cliques in massive networks,” ACM Trans. Database Syst., vol. 36,
no. 4, pp. 21:1–21:34, 2011.

[44] L. L€u, T. Zhou, Q.-M. Zhang, and H. E. Stanley, “The h-index of a
network node and its relation to degree and coreness,” Nature
Commun., vol. 7, no. 10168, pp. 1–7, 2016.

[45] J. Jiang, M. Mitzenmacher, and J. Thaler, “Parallel peeling algo-
rithms,” in Proc. Symp. Parallelism Algorithms Architectures, 2014,
pp. 319–330.

[46] R. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10,
pp. 2453–2465, Oct. 2014.

[47] A. E. Sariy€uce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and
€U. V. Çataly€urek, “Streaming algorithms for k-core decomposition,”
Proc. VLDB Endowment, vol. 6, no. 6, pp. 433–444, 2013.

[48] L. Dhulipala, G. E. Blelloch, and J. Shun, “Julienne: A framework
for parallel graph algorithms using work-efficient bucketing,” in
Proc. 29th ACM Symp. Parallelism Algorithms Architectures, 2017,
pp. 293–304.

[49] A.-L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509–512, 1999.

[50] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “k-core
organization of complex networks,” Phys. Rev. Lett., vol. 96, no. 4,
2006, Art. no. 040601.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong, in 2013. He is
currently a professor with the Beijing Institute of
Technology, Beijing, China. His research interests
include graph data management and mining,
social network analysis, graph computation sys-
tems, and graph-based machine learning.

Qiushuo Song received the bachelor’s degree
from Shantou University, Shantou, China, in 2016,
and themaster’s degree fromShenzhenUniversity,
Shenzhen, China. His current research interests
include graph data management, graph mining,
and social network analysis.

Xiaokui Xiao received thePhDdegree in computer
science from the Chinese University of Hong Kong,
in 2008. He is currently an associate professor with
the National University of Singapore (NUS), Singa-
pore. Before joining NUS in 2018, he was a associ-
ate professor with Nanyang Technological
University (NTU). His research interests include
data privacy, spatial databases, graph databases,
and parallel computing.

Lu Qin received the bachelor’s degree from the
Department of Computer Science and Technology,
Renmin University of China, in 2006, and the PhD
degree from the Department of Systems Engineer-
ing and Engineering Management, Chinese Uni-
versity of Hong Kong, in 2010. He is now a
associated professor with the Centre of Quantum
Computation and Intelligent Systems (QCIS), Uni-
versity of Technology, Sydney (UTS). His research
interests include parallel big graph processing, I/O
efficient algorithms on massive graphs, and key-
word search in relational database.

Guoren Wang received the BSc, MSc, and PhD
degrees from the Department of Computer Sci-
ence, Northeastern University, China, in 1988,
1991, and 1996, respectively. Currently, he is a pro-
fessor with the Department of Computer Science,
Northeastern University, China. His research inter-
ests include XML data management, query proc-
essing and optimization, bioinformatics, high
dimensional indexing, parallel database systems,
and cloud datamanagement.

Jeffery Xu Yu received the BE, ME, and PhD
degrees in computer science from the University of
Tsukuba, Japan, in 1985, 1987, and 1990, respec-
tively. He has held teaching positions at the Institute
of Information Sciences and Electronics, University
of Tsukuba, and with the Department of Computer
Science, Australian National University, Australia.
Currently, he is a professor with the Department of
Systems Engineering and Engineering Manage-
ment, Chinese University of Hong Kong, Hong
Kong. His current research interests include graph

database, graph mining, keyword search in relational databases, and
social network analysis.

Rui Mao received the PhD degree in computer
science from the University of Texas at Austin, in
2007. He is currently a professor with Shenzhen
University. His research interests include big data
analysis and management, content-based simi-
larity query of multimedia and biological data,
data mining, and machine learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 7, JULY 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:35:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

